Главная страница

Прямоугольник, его свойства



Скачать 33.36 Kb.
НазваниеПрямоугольник, его свойства
Дата14.02.2016
Размер33.36 Kb.
ТипДокументы
1. /01.10..docx
2. /01.11..docx
5. /13.12..docx
6. /18.10..docx
7. /24.09. (карточки-шпаргалки).docx
9. /27.09. (карточки-шпаргалки).docx
15. /КОНТРОЛЬНАЯ РАБОТА ь 1 ПО ТЕМЕ ЧЕТЫРЕХУГОЛЬНИКИ..docx
22. /МНОГОУГОЛЬНИК. ВЫПУКЛЫЙ МНОГОУГОЛЬНИК..docx
25. /ОСЕВАЯ И ЦЕНТРАЛЬНАЯ СИММЕТРИИ..docx
27. /ПАРАЛЛЕЛОГРАММ, ЕГО СВОЙСТВА..docx
37. /ПОНЯТИЕ ПЛОЩАДИ МНОГОУГОЛЬНИКА..docx
49. /ПРЯМОУГОЛЬНИК, ЕГО СВОЙСТВА..docx
50. /ПРЯМОУГОЛЬНИК. РОМБ И КВАДРАТ. ИХ СВОЙСТВА..docx
61. /РОМБ И КВАДРАТ. ИХ СВОЙСТВА..docx
66. /ТРАПЕЦИЯ, ЕЕ СВОЙСТВА..docx
67. /ТРАПЕЦИЯ. ЕЕ СВОЙСТВА. САМОСТОЯТЕЛЬНАЯ РАБОТА..docx
Найдите боковые стороны равнобедренной трапеции, основания которой равны 14 см и 8 см, а один из углов равен 120°
Стороны параллелограмма 10 см и 6 см, а угол между этими сторонами 150°. Найдите площадь этого параллелограмма
1. Смежные стороны параллелограмма равны 32 см и 26 см, а один из его углов равен 150°. Найдите площадь параллелограмма
1. Диагонали прямоугольника
Частные виды трапеции
Свойства равнобокой трапеции
Контрольная работа №1 по теме «Четырехугольники»
03. 09. Многоугольник. ВЫПУКЛЫЙ Многоугольник. Цели
Осевая и центральная симметрии
Параллелограмм, его свойства
Ход урока I. Организационный момент
Прямоугольник, его свойства
Прямоугольник. Ромб и квадрат. Их свойства
Ромб и квадрат, их свойства
Трапеция, ее свойства
Трапеция. Ее свойства. Самостоятельная работа

01.10.

ПРЯМОУГОЛЬНИК, ЕГО СВОЙСТВА.

Цели: дать определение прямоугольника, изучить свойства прямоугольника; способствовать развитию логического мышлении и вычислительных навыков учащихся; способствовать воспитанию внимания и наблюдательности.

Ход урока

I. Организационный момент.

II. Проверка домашнего задания.

Ответить на вопросы учащихся.



АВС – равнобедренный.

ВАС = ВСА = х°,

ВСА = DАС = х°, как внутренние накрест лежащие при ВС || АD и секущей АС, ВАD = СDА = 2х°.

Из прямоугольного АСD САD + СDА = 90°, х + 2х = 90°, х = 30°.

В трапеции А = D = 60°, В = С = 120°.

III. Изучение нового материала.

1. Определение прямоугольника.

2. Так как прямоугольник – параллелограмм, то какими свойствами он обладает?

3. Каким особенным свойством обладает прямоугольник?



4. Доказательство теоремы о равенстве диагоналей прямоугольника.

5. Будет ли верно обратное утверждение? Докажите.

6. В параллелограмме АВСD А = 90°. Докажите, что АВСD – прямоугольник.

7. АС – диагональ прямоугольника АВСD, САD = 35°. Чему равен АСD?

8. Определите периметр прямоугольника, если две его стороны 5 см и 8 см.

9. АВСD – прямоугольник. Докажите, что АОВ равнобедренный.

IV. Решение задач.

№ 400.

1. В прямоугольнике АВСD биссектриса угла D пересекает сторону АВ в точке М.

1) Докажите, что АDМ – равнобедренный.

2) Найдите периметр прямоугольника, если сторона АВ оказалась разбита на отрезки длиной 3 см и 5 см. Сколько решений имеет задача?



АD = 3, РАВСD = 22 АD = 5, РАВСD = 26.

V. Итоги урока.

Свойства прямоугольника

Любой прямоугольник является параллелограммом, значит, обладает всеми его свойствами:

АВСD
прямоугольник



АВ || CD, ВC || АD,

АВ = СD, ВС = АD,

АО = ОС, ВО = ОD



Кроме того, у прямоугольника имеются свои свойства:

АВСD
прямоугольник



а) А = В = C = D = 90°

(все углы прямые)

б) АС = ВD (диагонали равны)

Признаки прямоугольника

АВСD – параллелограмм

А = В = C = D = 90°



АВСD
прямоугольник

АВСD – параллелограмм
и АС = ВD



АВСD
прямоугольник


VI. Домашнее задание: вопросы 12, 13, с. 115; задачи № 403, 413 (а), 401 (а).