Главная страница

Частные виды трапеции



Скачать 22.95 Kb.
НазваниеЧастные виды трапеции
Дата14.02.2016
Размер22.95 Kb.
ТипДокументы
1. /01.10..docx
2. /01.11..docx
5. /13.12..docx
6. /18.10..docx
7. /24.09. (карточки-шпаргалки).docx
9. /27.09. (карточки-шпаргалки).docx
15. /КОНТРОЛЬНАЯ РАБОТА ь 1 ПО ТЕМЕ ЧЕТЫРЕХУГОЛЬНИКИ..docx
22. /МНОГОУГОЛЬНИК. ВЫПУКЛЫЙ МНОГОУГОЛЬНИК..docx
25. /ОСЕВАЯ И ЦЕНТРАЛЬНАЯ СИММЕТРИИ..docx
27. /ПАРАЛЛЕЛОГРАММ, ЕГО СВОЙСТВА..docx
37. /ПОНЯТИЕ ПЛОЩАДИ МНОГОУГОЛЬНИКА..docx
49. /ПРЯМОУГОЛЬНИК, ЕГО СВОЙСТВА..docx
50. /ПРЯМОУГОЛЬНИК. РОМБ И КВАДРАТ. ИХ СВОЙСТВА..docx
61. /РОМБ И КВАДРАТ. ИХ СВОЙСТВА..docx
66. /ТРАПЕЦИЯ, ЕЕ СВОЙСТВА..docx
67. /ТРАПЕЦИЯ. ЕЕ СВОЙСТВА. САМОСТОЯТЕЛЬНАЯ РАБОТА..docx
Найдите боковые стороны равнобедренной трапеции, основания которой равны 14 см и 8 см, а один из углов равен 120°
Стороны параллелограмма 10 см и 6 см, а угол между этими сторонами 150°. Найдите площадь этого параллелограмма
1. Смежные стороны параллелограмма равны 32 см и 26 см, а один из его углов равен 150°. Найдите площадь параллелограмма
1. Диагонали прямоугольника
Частные виды трапеции
Свойства равнобокой трапеции
Контрольная работа №1 по теме «Четырехугольники»
03. 09. Многоугольник. ВЫПУКЛЫЙ Многоугольник. Цели
Осевая и центральная симметрии
Параллелограмм, его свойства
Ход урока I. Организационный момент
Прямоугольник, его свойства
Прямоугольник. Ромб и квадрат. Их свойства
Ромб и квадрат, их свойства
Трапеция, ее свойства
Трапеция. Ее свойства. Самостоятельная работа



1. АВСD, ВЕFC – трапеции.

2. Частные виды трапеции:



Прямоугольная трапеция



Равнобокая трапеция
(равнобедренная)

3. В решении задач на трапецию можно использовать свойства углов при параллельных прямых и секущей 1 = 2 (как внутренние накрест лежащие при ВС || АD и секущей ВD).



3 + 4 = 180° (как внутренние односторонние при СD || ВЕ и секущей ВС).



5 + 6 (как соответственные при ОР || MR и секущей ОМ).



4. Применение теоремы Фалеса в трапеции:

а) ВС || MN || KР || QS || АD

и МВ = МK = KQ = QA,

то CN = NP = PS = SD;

б) МВ = МK = KQ = QA

и CN = NP = PS = SD,

то ВС || MN || KP || QS || AD.





1. АВСD, ВЕFC – трапеции.

2. Частные виды трапеции:



Прямоугольная трапеция



Равнобокая трапеция
(равнобедренная)

3. В решении задач на трапецию можно использовать свойства углов при параллельных прямых и секущей 1 = 2 (как внутренние накрест лежащие при ВС || АD и секущей ВD).



3 + 4 = 180° (как внутренние односторонние при СD || ВЕ и секущей ВС).



5 + 6 (как соответственные при ОР || MR и секущей ОМ).



4. Применение теоремы Фалеса в трапеции:

а) ВС || MN || KР || QS || АD

и МВ = МK = KQ = QA,

то CN = NP = PS = SD;

б) МВ = МK = KQ = QA

и CN = NP = PS = SD,

то ВС || MN || KP || QS || AD.